MakeItFrom.com
Menu (ESC)

EN AC-21100 Aluminum vs. N08700 Stainless Steel

EN AC-21100 aluminum belongs to the aluminum alloys classification, while N08700 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21100 aluminum and the bottom bar is N08700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
170
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 6.2 to 7.3
32
Fatigue Strength, MPa 79 to 87
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 340 to 350
620
Tensile Strength: Yield (Proof), MPa 210 to 240
270

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 670
1450
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
32
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.0
6.0
Embodied Energy, MJ/kg 150
82
Embodied Water, L/kg 1150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 21
160
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 400
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 31 to 33
21
Strength to Weight: Bending, points 36 to 37
20
Thermal Diffusivity, mm2/s 48
3.5
Thermal Shock Resistance, points 15
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.4 to 95.7
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 4.2 to 5.2
0 to 0.5
Iron (Fe), % 0 to 0.19
42 to 52.7
Manganese (Mn), % 0 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
4.3 to 5.0
Nickel (Ni), % 0
24 to 26
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.18
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0