MakeItFrom.com
Menu (ESC)

EN AC-21100 Aluminum vs. S31277 Stainless Steel

EN AC-21100 aluminum belongs to the aluminum alloys classification, while S31277 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21100 aluminum and the bottom bar is S31277 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 6.2 to 7.3
45
Fatigue Strength, MPa 79 to 87
380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 340 to 350
860
Tensile Strength: Yield (Proof), MPa 210 to 240
410

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 670
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 880
460
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.0
6.7
Embodied Energy, MJ/kg 150
90
Embodied Water, L/kg 1150
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 21
320
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 400
410
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 31 to 33
29
Strength to Weight: Bending, points 36 to 37
25
Thermal Shock Resistance, points 15
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.4 to 95.7
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
20.5 to 23
Copper (Cu), % 4.2 to 5.2
0.5 to 1.5
Iron (Fe), % 0 to 0.19
35.5 to 46.2
Manganese (Mn), % 0 to 0.55
0 to 3.0
Molybdenum (Mo), % 0
6.5 to 8.0
Nickel (Ni), % 0
26 to 28
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.18
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0