MakeItFrom.com
Menu (ESC)

EN AC-21200 Aluminum vs. 6065 Aluminum

Both EN AC-21200 aluminum and 6065 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-21200 aluminum and the bottom bar is 6065 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 3.9 to 6.2
4.5 to 11
Fatigue Strength, MPa 110 to 130
96 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 410 to 440
310 to 400
Tensile Strength: Yield (Proof), MPa 270 to 360
270 to 380

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 660
640
Melting Onset (Solidus), °C 550
590
Specific Heat Capacity, J/kg-K 880
890
Thermal Conductivity, W/m-K 130
170
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
43
Electrical Conductivity: Equal Weight (Specific), % IACS 100
140

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 8.0
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 22
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 930
540 to 1040
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
49
Strength to Weight: Axial, points 38 to 40
31 to 40
Strength to Weight: Bending, points 41 to 43
36 to 43
Thermal Diffusivity, mm2/s 49
67
Thermal Shock Resistance, points 18 to 19
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.3 to 95.7
94.4 to 98.2
Bismuth (Bi), % 0
0.5 to 1.5
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 4.0 to 5.0
0.15 to 0.4
Iron (Fe), % 0 to 0.2
0 to 0.7
Lead (Pb), % 0 to 0.030
0 to 0.050
Magnesium (Mg), % 0.15 to 0.5
0.8 to 1.2
Manganese (Mn), % 0.2 to 0.5
0 to 0.15
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
0.4 to 0.8
Tin (Sn), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.1
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.25
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.1
0 to 0.15