MakeItFrom.com
Menu (ESC)

EN AC-21200 Aluminum vs. 7049A Aluminum

Both EN AC-21200 aluminum and 7049A aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-21200 aluminum and the bottom bar is 7049A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
71
Elongation at Break, % 3.9 to 6.2
5.0 to 5.7
Fatigue Strength, MPa 110 to 130
180
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 410 to 440
580 to 590
Tensile Strength: Yield (Proof), MPa 270 to 360
500 to 530

Thermal Properties

Latent Heat of Fusion, J/g 390
370
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 660
640
Melting Onset (Solidus), °C 550
430
Specific Heat Capacity, J/kg-K 880
850
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
40
Electrical Conductivity: Equal Weight (Specific), % IACS 100
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 3.0
3.1
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 22
28 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 930
1800 to 1990
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
44
Strength to Weight: Axial, points 38 to 40
52 to 53
Strength to Weight: Bending, points 41 to 43
50 to 51
Thermal Diffusivity, mm2/s 49
50
Thermal Shock Resistance, points 18 to 19
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.3 to 95.7
84.6 to 89.5
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 4.0 to 5.0
1.2 to 1.9
Iron (Fe), % 0 to 0.2
0 to 0.5
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0.15 to 0.5
2.1 to 3.1
Manganese (Mn), % 0.2 to 0.5
0 to 0.5
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
0 to 0.4
Tin (Sn), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.1
7.2 to 8.4
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0 to 0.1
0 to 0.15