MakeItFrom.com
Menu (ESC)

EN AC-21200 Aluminum vs. 7075 Aluminum

Both EN AC-21200 aluminum and 7075 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN AC-21200 aluminum and the bottom bar is 7075 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 3.9 to 6.2
1.8 to 12
Fatigue Strength, MPa 110 to 130
110 to 190
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 410 to 440
240 to 590
Tensile Strength: Yield (Proof), MPa 270 to 360
120 to 510

Thermal Properties

Latent Heat of Fusion, J/g 390
380
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 660
640
Melting Onset (Solidus), °C 550
480
Specific Heat Capacity, J/kg-K 880
870
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
33
Electrical Conductivity: Equal Weight (Specific), % IACS 100
98

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 3.0
3.0
Embodied Carbon, kg CO2/kg material 8.0
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 22
7.8 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 930
110 to 1870
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
46
Strength to Weight: Axial, points 38 to 40
22 to 54
Strength to Weight: Bending, points 41 to 43
28 to 52
Thermal Diffusivity, mm2/s 49
50
Thermal Shock Resistance, points 18 to 19
10 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.3 to 95.7
86.9 to 91.4
Chromium (Cr), % 0
0.18 to 0.28
Copper (Cu), % 4.0 to 5.0
1.2 to 2.0
Iron (Fe), % 0 to 0.2
0 to 0.5
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0.15 to 0.5
2.1 to 2.9
Manganese (Mn), % 0.2 to 0.5
0 to 0.3
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
0 to 0.4
Tin (Sn), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.1
5.1 to 6.1
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0 to 0.1
0 to 0.15

Comparable Variants