MakeItFrom.com
Menu (ESC)

EN AC-21200 Aluminum vs. S44735 Stainless Steel

EN AC-21200 aluminum belongs to the aluminum alloys classification, while S44735 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21200 aluminum and the bottom bar is S44735 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 130
220
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 3.9 to 6.2
21
Fatigue Strength, MPa 110 to 130
300
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
82
Tensile Strength: Ultimate (UTS), MPa 410 to 440
630
Tensile Strength: Yield (Proof), MPa 270 to 360
460

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 880
480
Thermal Expansion, µm/m-K 23
11

Otherwise Unclassified Properties

Base Metal Price, % relative 10
21
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.0
4.4
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1150
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 22
120
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 930
520
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
26
Strength to Weight: Axial, points 38 to 40
23
Strength to Weight: Bending, points 41 to 43
21
Thermal Shock Resistance, points 18 to 19
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.3 to 95.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 0.2
60.7 to 68.4
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0.15 to 0.5
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
3.6 to 4.2
Nickel (Ni), % 0 to 0.050
0 to 1.0
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.1
0.2 to 1.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.1
0