MakeItFrom.com
Menu (ESC)

EN AC-41000 Aluminum vs. Grade M30C Nickel

EN AC-41000 aluminum belongs to the aluminum alloys classification, while grade M30C nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-41000 aluminum and the bottom bar is grade M30C nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
160
Elongation at Break, % 4.5
29
Fatigue Strength, MPa 58 to 71
170
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
61
Tensile Strength: Ultimate (UTS), MPa 170 to 280
510
Tensile Strength: Yield (Proof), MPa 80 to 210
250

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 640
1290
Melting Onset (Solidus), °C 630
1240
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 170
22
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 8.2
9.5
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1160
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 11
120
Resilience: Unit (Modulus of Resilience), kJ/m3 46 to 300
200
Stiffness to Weight: Axial, points 14
10
Stiffness to Weight: Bending, points 51
21
Strength to Weight: Axial, points 18 to 29
16
Strength to Weight: Bending, points 26 to 35
16
Thermal Diffusivity, mm2/s 69
5.7
Thermal Shock Resistance, points 7.8 to 13
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.2 to 97.6
0
Carbon (C), % 0
0 to 0.3
Copper (Cu), % 0 to 0.1
26 to 33
Iron (Fe), % 0 to 0.6
0 to 3.5
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0.3 to 0.5
0 to 1.5
Nickel (Ni), % 0 to 0.050
56.6 to 72
Niobium (Nb), % 0
1.0 to 3.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 1.6 to 2.4
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0