MakeItFrom.com
Menu (ESC)

EN AC-42000 Aluminum vs. EN 1.4807 Stainless Steel

EN AC-42000 aluminum belongs to the aluminum alloys classification, while EN 1.4807 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42000 aluminum and the bottom bar is EN 1.4807 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 59 to 91
140
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 1.1 to 2.4
4.5
Fatigue Strength, MPa 67 to 76
120
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 170 to 270
480
Tensile Strength: Yield (Proof), MPa 95 to 230
250

Thermal Properties

Latent Heat of Fusion, J/g 500
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 610
1390
Melting Onset (Solidus), °C 600
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 22
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
39
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 8.0
6.8
Embodied Energy, MJ/kg 150
97
Embodied Water, L/kg 1110
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8 to 5.7
18
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 370
160
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 18 to 28
17
Strength to Weight: Bending, points 26 to 35
17
Thermal Diffusivity, mm2/s 66
3.2
Thermal Shock Resistance, points 7.9 to 12
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.9 to 93.3
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.55
36.6 to 46.7
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.2 to 0.65
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.15
34 to 36
Niobium (Nb), % 0
1.0 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0