MakeItFrom.com
Menu (ESC)

EN AC-42100 Aluminum vs. CC767S Brass

EN AC-42100 aluminum belongs to the aluminum alloys classification, while CC767S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42100 aluminum and the bottom bar is CC767S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
86
Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 3.4 to 9.0
34
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 280 to 290
430
Tensile Strength: Yield (Proof), MPa 210 to 230
150

Thermal Properties

Latent Heat of Fusion, J/g 500
180
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 610
840
Melting Onset (Solidus), °C 600
790
Specific Heat Capacity, J/kg-K 910
390
Thermal Conductivity, W/m-K 150
110
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
32
Electrical Conductivity: Equal Weight (Specific), % IACS 140
36

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1110
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 23
110
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 370
100
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 53
20
Strength to Weight: Axial, points 30 to 31
15
Strength to Weight: Bending, points 37 to 38
16
Thermal Diffusivity, mm2/s 66
34
Thermal Shock Resistance, points 13
14

Alloy Composition

Aluminum (Al), % 91.3 to 93.3
0.1 to 0.8
Copper (Cu), % 0 to 0.050
58 to 64
Iron (Fe), % 0 to 0.19
0 to 0.5
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Silicon (Si), % 6.5 to 7.5
0 to 0.2
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.070
32.8 to 41.9
Residuals, % 0 to 0.1
0