MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. 5051A Aluminum

Both EN AC-42200 aluminum and 5051A aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is 5051A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 3.0 to 6.7
18 to 21
Fatigue Strength, MPa 86 to 90
51 to 61
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 320
170
Tensile Strength: Yield (Proof), MPa 240 to 260
56

Thermal Properties

Latent Heat of Fusion, J/g 500
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 610
640
Melting Onset (Solidus), °C 600
610
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 150
150
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
39
Electrical Conductivity: Equal Weight (Specific), % IACS 140
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.5
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 20
24 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 490
23
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
50
Strength to Weight: Axial, points 34 to 35
17 to 18
Strength to Weight: Bending, points 40 to 41
25
Thermal Diffusivity, mm2/s 66
63
Thermal Shock Resistance, points 15
7.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91 to 93.1
96.1 to 98.6
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.050
0 to 0.050
Iron (Fe), % 0 to 0.19
0 to 0.45
Magnesium (Mg), % 0.45 to 0.7
1.4 to 2.1
Manganese (Mn), % 0 to 0.1
0 to 0.25
Silicon (Si), % 6.5 to 7.5
0 to 0.3
Titanium (Ti), % 0 to 0.25
0 to 0.1
Zinc (Zn), % 0 to 0.070
0 to 0.2
Residuals, % 0 to 0.1
0 to 0.15