MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. 5449 Aluminum

Both EN AC-42200 aluminum and 5449 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is 5449 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
69
Elongation at Break, % 3.0 to 6.7
4.0 to 17
Fatigue Strength, MPa 86 to 90
78 to 120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 320
210 to 330
Tensile Strength: Yield (Proof), MPa 240 to 260
91 to 260

Thermal Properties

Latent Heat of Fusion, J/g 500
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 610
650
Melting Onset (Solidus), °C 600
590
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 150
140
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
35
Electrical Conductivity: Equal Weight (Specific), % IACS 140
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.8
Embodied Carbon, kg CO2/kg material 8.0
8.5
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 20
12 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 490
60 to 480
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
50
Strength to Weight: Axial, points 34 to 35
22 to 33
Strength to Weight: Bending, points 40 to 41
29 to 39
Thermal Diffusivity, mm2/s 66
56
Thermal Shock Resistance, points 15
9.4 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91 to 93.1
94.1 to 97.8
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.050
0 to 0.3
Iron (Fe), % 0 to 0.19
0 to 0.7
Magnesium (Mg), % 0.45 to 0.7
1.6 to 2.6
Manganese (Mn), % 0 to 0.1
0.6 to 1.1
Silicon (Si), % 6.5 to 7.5
0 to 0.4
Titanium (Ti), % 0 to 0.25
0 to 0.1
Zinc (Zn), % 0 to 0.070
0 to 0.3
Residuals, % 0 to 0.1
0 to 0.15