MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. ASTM B817 Type I

EN AC-42200 aluminum belongs to the aluminum alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
100
Elongation at Break, % 3.0 to 6.7
4.0 to 13
Fatigue Strength, MPa 86 to 90
360 to 520
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 320
770 to 960
Tensile Strength: Yield (Proof), MPa 240 to 260
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 500
410
Maximum Temperature: Mechanical, °C 170
340
Melting Completion (Liquidus), °C 610
1600
Melting Onset (Solidus), °C 600
1550
Specific Heat Capacity, J/kg-K 910
560
Thermal Conductivity, W/m-K 150
7.1
Thermal Expansion, µm/m-K 22
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.6
4.4
Embodied Carbon, kg CO2/kg material 8.0
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1110
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 20
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 490
2310 to 3540
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
35
Strength to Weight: Axial, points 34 to 35
48 to 60
Strength to Weight: Bending, points 40 to 41
42 to 49
Thermal Diffusivity, mm2/s 66
2.9
Thermal Shock Resistance, points 15
54 to 68

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91 to 93.1
5.5 to 6.8
Carbon (C), % 0
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Copper (Cu), % 0 to 0.050
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.19
0 to 0.4
Magnesium (Mg), % 0.45 to 0.7
0
Manganese (Mn), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Silicon (Si), % 6.5 to 7.5
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.25
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0 to 0.4