MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. N07752 Nickel

EN AC-42200 aluminum belongs to the aluminum alloys classification, while N07752 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.0 to 6.7
22
Fatigue Strength, MPa 86 to 90
450
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 320
1120
Tensile Strength: Yield (Proof), MPa 240 to 260
740

Thermal Properties

Latent Heat of Fusion, J/g 500
310
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 610
1380
Melting Onset (Solidus), °C 600
1330
Specific Heat Capacity, J/kg-K 910
460
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.6
8.4
Embodied Carbon, kg CO2/kg material 8.0
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 20
220
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 490
1450
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 34 to 35
37
Strength to Weight: Bending, points 40 to 41
29
Thermal Diffusivity, mm2/s 66
3.2
Thermal Shock Resistance, points 15
34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91 to 93.1
0.4 to 1.0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0 to 0.050
0 to 0.5
Iron (Fe), % 0 to 0.19
5.0 to 9.0
Magnesium (Mg), % 0.45 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.0080
Silicon (Si), % 6.5 to 7.5
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Titanium (Ti), % 0 to 0.25
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.070
0 to 0.050
Residuals, % 0 to 0.1
0