MakeItFrom.com
Menu (ESC)

EN AC-43000 Aluminum vs. A242.0 Aluminum

Both EN AC-43000 aluminum and A242.0 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN AC-43000 aluminum and the bottom bar is A242.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 94
75
Elastic (Young's, Tensile) Modulus, GPa 71
73
Elongation at Break, % 1.1 to 2.5
1.6
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 180 to 270
220

Thermal Properties

Latent Heat of Fusion, J/g 540
390
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 600
680
Melting Onset (Solidus), °C 590
550
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 140
140
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
37
Electrical Conductivity: Equal Weight (Specific), % IACS 130
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.6
3.1
Embodied Carbon, kg CO2/kg material 7.8
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1130

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
45
Strength to Weight: Axial, points 20 to 29
20
Strength to Weight: Bending, points 28 to 36
26
Thermal Diffusivity, mm2/s 60
52
Thermal Shock Resistance, points 8.6 to 12
9.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87 to 90.8
89.3 to 93.1
Chromium (Cr), % 0
0.15 to 0.25
Copper (Cu), % 0 to 0.050
3.7 to 4.5
Iron (Fe), % 0 to 0.55
0 to 0.8
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
1.2 to 1.7
Manganese (Mn), % 0 to 0.45
0 to 0.1
Nickel (Ni), % 0 to 0.050
1.8 to 2.3
Silicon (Si), % 9.0 to 11
0 to 0.6
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0.070 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15