MakeItFrom.com
Menu (ESC)

EN AC-43000 Aluminum vs. EN 1.8201 Steel

EN AC-43000 aluminum belongs to the aluminum alloys classification, while EN 1.8201 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43000 aluminum and the bottom bar is EN 1.8201 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 94
190
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 1.1 to 2.5
20
Fatigue Strength, MPa 68 to 76
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 180 to 270
630
Tensile Strength: Yield (Proof), MPa 97 to 230
450

Thermal Properties

Latent Heat of Fusion, J/g 540
250
Maximum Temperature: Mechanical, °C 170
450
Melting Completion (Liquidus), °C 600
1500
Melting Onset (Solidus), °C 590
1450
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
40
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 7.8
2.5
Embodied Energy, MJ/kg 150
36
Embodied Water, L/kg 1070
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
110
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
530
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 20 to 29
22
Strength to Weight: Bending, points 28 to 36
20
Thermal Diffusivity, mm2/s 60
11
Thermal Shock Resistance, points 8.6 to 12
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87 to 90.8
0 to 0.030
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
1.9 to 2.6
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.55
93.6 to 96.2
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
0.1 to 0.6
Molybdenum (Mo), % 0
0.050 to 0.3
Nickel (Ni), % 0 to 0.050
0
Niobium (Nb), % 0
0.020 to 0.080
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 9.0 to 11
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0.0050 to 0.060
Tungsten (W), % 0
1.5 to 1.8
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0