MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. Nickel 890

EN AC-43100 aluminum belongs to the aluminum alloys classification, while nickel 890 belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is nickel 890.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 1.1 to 2.5
39
Fatigue Strength, MPa 68 to 76
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 180 to 270
590
Tensile Strength: Yield (Proof), MPa 97 to 230
230

Thermal Properties

Latent Heat of Fusion, J/g 540
330
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 600
1390
Melting Onset (Solidus), °C 590
1340
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 22
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
47
Density, g/cm3 2.6
8.1
Embodied Carbon, kg CO2/kg material 7.8
8.2
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1070
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
180
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 20 to 29
20
Strength to Weight: Bending, points 28 to 36
19
Thermal Shock Resistance, points 8.6 to 12
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86.9 to 90.8
0.050 to 0.6
Carbon (C), % 0
0.060 to 0.14
Chromium (Cr), % 0
23.5 to 28.5
Copper (Cu), % 0 to 0.1
0 to 0.75
Iron (Fe), % 0 to 0.55
17.3 to 33.9
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
0 to 1.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0 to 0.050
40 to 45
Niobium (Nb), % 0
0.2 to 1.0
Silicon (Si), % 9.0 to 11
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.1 to 0.6
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0.15 to 0.6
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0