MakeItFrom.com
Menu (ESC)

EN AC-43200 Aluminum vs. 7116 Aluminum

Both EN AC-43200 aluminum and 7116 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-43200 aluminum and the bottom bar is 7116 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 1.1
7.8
Fatigue Strength, MPa 67
160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 190 to 260
370
Tensile Strength: Yield (Proof), MPa 97 to 220
330

Thermal Properties

Latent Heat of Fusion, J/g 540
380
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 590
520
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 140
150
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
46
Electrical Conductivity: Equal Weight (Specific), % IACS 120
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.9
Embodied Carbon, kg CO2/kg material 7.8
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.8 to 2.7
28
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 330
790
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
47
Strength to Weight: Axial, points 20 to 28
35
Strength to Weight: Bending, points 28 to 35
39
Thermal Diffusivity, mm2/s 59
58
Thermal Shock Resistance, points 8.8 to 12
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86.1 to 90.8
91.5 to 94.5
Copper (Cu), % 0 to 0.35
0.5 to 1.1
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.65
0 to 0.3
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.2 to 0.45
0.8 to 1.4
Manganese (Mn), % 0 to 0.55
0 to 0.050
Nickel (Ni), % 0 to 0.15
0
Silicon (Si), % 9.0 to 11
0 to 0.15
Titanium (Ti), % 0 to 0.2
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.35
4.2 to 5.2
Residuals, % 0 to 0.15
0 to 0.15