MakeItFrom.com
Menu (ESC)

EN AC-43200 Aluminum vs. C66300 Brass

EN AC-43200 aluminum belongs to the aluminum alloys classification, while C66300 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43200 aluminum and the bottom bar is C66300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 1.1
2.3 to 22
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
42
Tensile Strength: Ultimate (UTS), MPa 190 to 260
460 to 810
Tensile Strength: Yield (Proof), MPa 97 to 220
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 540
200
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 600
1050
Melting Onset (Solidus), °C 590
1000
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 140
110
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
25
Electrical Conductivity: Equal Weight (Specific), % IACS 120
26

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.6
8.6
Embodied Carbon, kg CO2/kg material 7.8
2.8
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1070
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.8 to 2.7
17 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 330
710 to 2850
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 54
19
Strength to Weight: Axial, points 20 to 28
15 to 26
Strength to Weight: Bending, points 28 to 35
15 to 22
Thermal Diffusivity, mm2/s 59
32
Thermal Shock Resistance, points 8.8 to 12
16 to 28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86.1 to 90.8
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0 to 0.35
84.5 to 87.5
Iron (Fe), % 0 to 0.65
1.4 to 2.4
Lead (Pb), % 0 to 0.1
0 to 0.050
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.55
0
Nickel (Ni), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.35
Silicon (Si), % 9.0 to 11
0
Tin (Sn), % 0
1.5 to 3.0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.35
6.0 to 12.8
Residuals, % 0 to 0.15
0 to 0.5