MakeItFrom.com
Menu (ESC)

EN AC-43300 Aluminum vs. 380.0 Aluminum

Both EN AC-43300 aluminum and 380.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-43300 aluminum and the bottom bar is 380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91 to 94
80
Elastic (Young's, Tensile) Modulus, GPa 71
74
Elongation at Break, % 3.4 to 6.7
3.0
Fatigue Strength, MPa 76 to 77
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
28
Tensile Strength: Ultimate (UTS), MPa 280 to 290
320
Tensile Strength: Yield (Proof), MPa 210 to 230
160

Thermal Properties

Latent Heat of Fusion, J/g 540
510
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 600
590
Melting Onset (Solidus), °C 590
540
Specific Heat Capacity, J/kg-K 910
870
Thermal Conductivity, W/m-K 140
100
Thermal Expansion, µm/m-K 22
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
27
Electrical Conductivity: Equal Weight (Specific), % IACS 140
83

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.5
2.9
Embodied Carbon, kg CO2/kg material 7.9
7.5
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1080
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 17
8.0
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 370
170
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
48
Strength to Weight: Axial, points 31 to 32
31
Strength to Weight: Bending, points 37 to 38
36
Thermal Diffusivity, mm2/s 59
40
Thermal Shock Resistance, points 13 to 14
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.9 to 90.8
79.6 to 89.5
Copper (Cu), % 0 to 0.050
3.0 to 4.0
Iron (Fe), % 0 to 0.19
0 to 2.0
Magnesium (Mg), % 0.25 to 0.45
0 to 0.1
Manganese (Mn), % 0 to 0.1
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 9.0 to 10
7.5 to 9.5
Tin (Sn), % 0
0 to 0.35
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.070
0 to 3.0
Residuals, % 0 to 0.1
0 to 0.5