MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. 2011 Aluminum

Both EN AC-43500 aluminum and 2011 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is 2011 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 4.5 to 13
8.5 to 18
Fatigue Strength, MPa 62 to 100
74 to 120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 220 to 300
310 to 420
Tensile Strength: Yield (Proof), MPa 140 to 170
140 to 310

Thermal Properties

Latent Heat of Fusion, J/g 550
390
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 590
540
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 140
140 to 170
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
35 to 45
Electrical Conductivity: Equal Weight (Specific), % IACS 130
100 to 130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
3.1
Embodied Carbon, kg CO2/kg material 7.8
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 26
29 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 200
140 to 680
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
44
Strength to Weight: Axial, points 24 to 33
27 to 37
Strength to Weight: Bending, points 32 to 39
32 to 40
Thermal Diffusivity, mm2/s 60
51 to 64
Thermal Shock Resistance, points 10 to 14
14 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86.4 to 90.5
91.3 to 94.6
Bismuth (Bi), % 0
0.2 to 0.6
Copper (Cu), % 0 to 0.050
5.0 to 6.0
Iron (Fe), % 0 to 0.25
0 to 0.7
Lead (Pb), % 0
0.2 to 0.6
Magnesium (Mg), % 0.1 to 0.6
0
Manganese (Mn), % 0.4 to 0.8
0
Silicon (Si), % 9.0 to 11.5
0 to 0.4
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.070
0 to 0.3
Residuals, % 0 to 0.15
0 to 0.15