MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. 2011A Aluminum

Both EN AC-43500 aluminum and 2011A aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is 2011A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
70
Elongation at Break, % 4.5 to 13
6.8 to 16
Fatigue Strength, MPa 62 to 100
75 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 220 to 300
310 to 410
Tensile Strength: Yield (Proof), MPa 140 to 170
140 to 310

Thermal Properties

Latent Heat of Fusion, J/g 550
390
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 600
660
Melting Onset (Solidus), °C 590
550
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
33
Electrical Conductivity: Equal Weight (Specific), % IACS 130
96

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
3.1
Embodied Carbon, kg CO2/kg material 7.8
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 26
20 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 200
140 to 670
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
44
Strength to Weight: Axial, points 24 to 33
28 to 37
Strength to Weight: Bending, points 32 to 39
33 to 40
Thermal Diffusivity, mm2/s 60
49
Thermal Shock Resistance, points 10 to 14
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86.4 to 90.5
91.5 to 95.1
Bismuth (Bi), % 0
0.2 to 0.6
Copper (Cu), % 0 to 0.050
4.5 to 6.0
Iron (Fe), % 0 to 0.25
0 to 0.5
Lead (Pb), % 0
0.2 to 0.6
Magnesium (Mg), % 0.1 to 0.6
0
Manganese (Mn), % 0.4 to 0.8
0
Silicon (Si), % 9.0 to 11.5
0 to 0.4
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.070
0 to 0.3
Residuals, % 0 to 0.15
0 to 0.15