MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. AWS ER80S-Ni1

EN AC-43500 aluminum belongs to the aluminum alloys classification, while AWS ER80S-Ni1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is AWS ER80S-Ni1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 4.5 to 13
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 220 to 300
630
Tensile Strength: Yield (Proof), MPa 140 to 170
530

Thermal Properties

Latent Heat of Fusion, J/g 550
260
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
41
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.7
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1070
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 26
160
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 200
740
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 24 to 33
22
Strength to Weight: Bending, points 32 to 39
21
Thermal Diffusivity, mm2/s 60
11
Thermal Shock Resistance, points 10 to 14
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86.4 to 90.5
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0 to 0.050
0 to 0.35
Iron (Fe), % 0 to 0.25
95.3 to 98.8
Magnesium (Mg), % 0.1 to 0.6
0
Manganese (Mn), % 0.4 to 0.8
0 to 1.3
Molybdenum (Mo), % 0
0 to 0.35
Nickel (Ni), % 0
0.8 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 9.0 to 11.5
0.4 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.15
0 to 0.5