MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. EN 1.3558 Steel

EN AC-43500 aluminum belongs to the aluminum alloys classification, while EN 1.3558 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is EN 1.3558 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68 to 91
230
Elastic (Young's, Tensile) Modulus, GPa 72
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 220 to 300
770

Thermal Properties

Latent Heat of Fusion, J/g 550
240
Maximum Temperature: Mechanical, °C 170
490
Melting Completion (Liquidus), °C 600
1810
Melting Onset (Solidus), °C 590
1760
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 140
20
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
13
Electrical Conductivity: Equal Weight (Specific), % IACS 130
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
45
Density, g/cm3 2.6
9.3
Embodied Carbon, kg CO2/kg material 7.8
8.4
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1070
90

Common Calculations

Stiffness to Weight: Axial, points 16
12
Stiffness to Weight: Bending, points 54
21
Strength to Weight: Axial, points 24 to 33
23
Strength to Weight: Bending, points 32 to 39
20
Thermal Diffusivity, mm2/s 60
5.3
Thermal Shock Resistance, points 10 to 14
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86.4 to 90.5
0
Carbon (C), % 0
0.7 to 0.8
Chromium (Cr), % 0
3.9 to 4.3
Copper (Cu), % 0 to 0.050
0 to 0.3
Iron (Fe), % 0 to 0.25
73.7 to 77.6
Magnesium (Mg), % 0.1 to 0.6
0
Manganese (Mn), % 0.4 to 0.8
0 to 0.4
Molybdenum (Mo), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 9.0 to 11.5
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
17.5 to 19
Vanadium (V), % 0
1.0 to 1.3
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.15
0