MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. C44500 Brass

EN AC-43500 aluminum belongs to the aluminum alloys classification, while C44500 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is C44500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 220 to 300
350
Tensile Strength: Yield (Proof), MPa 140 to 170
120

Thermal Properties

Latent Heat of Fusion, J/g 550
180
Maximum Temperature: Mechanical, °C 170
140
Melting Completion (Liquidus), °C 600
940
Melting Onset (Solidus), °C 590
900
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 140
110
Thermal Expansion, µm/m-K 22
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
25
Electrical Conductivity: Equal Weight (Specific), % IACS 130
27

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.6
8.3
Embodied Carbon, kg CO2/kg material 7.8
2.7
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1070
330

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 200
65
Stiffness to Weight: Axial, points 16
7.2
Stiffness to Weight: Bending, points 54
19
Strength to Weight: Axial, points 24 to 33
12
Strength to Weight: Bending, points 32 to 39
13
Thermal Diffusivity, mm2/s 60
35
Thermal Shock Resistance, points 10 to 14
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86.4 to 90.5
0
Copper (Cu), % 0 to 0.050
70 to 73
Iron (Fe), % 0 to 0.25
0 to 0.060
Lead (Pb), % 0
0 to 0.070
Magnesium (Mg), % 0.1 to 0.6
0
Manganese (Mn), % 0.4 to 0.8
0
Phosphorus (P), % 0
0.020 to 0.1
Silicon (Si), % 9.0 to 11.5
0
Tin (Sn), % 0
0.9 to 1.2
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.070
25.2 to 29.1
Residuals, % 0 to 0.15
0 to 0.4