MakeItFrom.com
Menu (ESC)

EN AC-43500 Aluminum vs. N07716 Nickel

EN AC-43500 aluminum belongs to the aluminum alloys classification, while N07716 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43500 aluminum and the bottom bar is N07716 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 4.5 to 13
34
Fatigue Strength, MPa 62 to 100
690
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 220 to 300
860
Tensile Strength: Yield (Proof), MPa 140 to 170
350

Thermal Properties

Latent Heat of Fusion, J/g 550
320
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 600
1480
Melting Onset (Solidus), °C 590
1430
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.6
8.5
Embodied Carbon, kg CO2/kg material 7.8
13
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1070
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 26
240
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 200
300
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
23
Strength to Weight: Axial, points 24 to 33
28
Strength to Weight: Bending, points 32 to 39
24
Thermal Diffusivity, mm2/s 60
2.8
Thermal Shock Resistance, points 10 to 14
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86.4 to 90.5
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.25
0 to 11.3
Magnesium (Mg), % 0.1 to 0.6
0
Manganese (Mn), % 0.4 to 0.8
0 to 0.2
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0
59 to 63
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 9.0 to 11.5
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
1.0 to 1.6
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.15
0