MakeItFrom.com
Menu (ESC)

EN AC-44000 Aluminum vs. C44300 Brass

EN AC-44000 aluminum belongs to the aluminum alloys classification, while C44300 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44000 aluminum and the bottom bar is C44300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 180
350
Tensile Strength: Yield (Proof), MPa 86
120

Thermal Properties

Latent Heat of Fusion, J/g 560
180
Maximum Temperature: Mechanical, °C 170
140
Melting Completion (Liquidus), °C 590
940
Melting Onset (Solidus), °C 590
900
Specific Heat Capacity, J/kg-K 910
380
Thermal Conductivity, W/m-K 140
110
Thermal Expansion, µm/m-K 21
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
25
Electrical Conductivity: Equal Weight (Specific), % IACS 130
27

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.5
8.3
Embodied Carbon, kg CO2/kg material 7.8
2.8
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1070
330

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 51
65
Stiffness to Weight: Axial, points 16
7.2
Stiffness to Weight: Bending, points 55
19
Strength to Weight: Axial, points 20
12
Strength to Weight: Bending, points 28
13
Thermal Diffusivity, mm2/s 61
35
Thermal Shock Resistance, points 8.4
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.1 to 90
0
Arsenic (As), % 0
0.020 to 0.060
Copper (Cu), % 0 to 0.050
70 to 73
Iron (Fe), % 0 to 0.19
0 to 0.060
Lead (Pb), % 0
0 to 0.070
Magnesium (Mg), % 0 to 0.45
0
Manganese (Mn), % 0 to 0.1
0
Silicon (Si), % 10 to 11.8
0
Tin (Sn), % 0
0.9 to 1.2
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.070
25.2 to 29.1
Residuals, % 0 to 0.1
0 to 0.4