MakeItFrom.com
Menu (ESC)

EN AC-44000 Aluminum vs. C83400 Brass

EN AC-44000 aluminum belongs to the aluminum alloys classification, while C83400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44000 aluminum and the bottom bar is C83400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 7.3
30
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
42
Tensile Strength: Ultimate (UTS), MPa 180
240
Tensile Strength: Yield (Proof), MPa 86
69

Thermal Properties

Latent Heat of Fusion, J/g 560
200
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 590
1040
Melting Onset (Solidus), °C 590
1020
Specific Heat Capacity, J/kg-K 910
380
Thermal Conductivity, W/m-K 140
190
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
44
Electrical Conductivity: Equal Weight (Specific), % IACS 130
46

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.5
8.7
Embodied Carbon, kg CO2/kg material 7.8
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1070
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
55
Resilience: Unit (Modulus of Resilience), kJ/m3 51
21
Stiffness to Weight: Axial, points 16
7.2
Stiffness to Weight: Bending, points 55
19
Strength to Weight: Axial, points 20
7.7
Strength to Weight: Bending, points 28
9.9
Thermal Diffusivity, mm2/s 61
57
Thermal Shock Resistance, points 8.4
8.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.1 to 90
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 0 to 0.050
88 to 92
Iron (Fe), % 0 to 0.19
0 to 0.25
Lead (Pb), % 0
0 to 0.5
Magnesium (Mg), % 0 to 0.45
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 10 to 11.8
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.070
8.0 to 12
Residuals, % 0 to 0.1
0 to 0.7