MakeItFrom.com
Menu (ESC)

EN AC-44000 Aluminum vs. N08332 Stainless Steel

EN AC-44000 aluminum belongs to the aluminum alloys classification, while N08332 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44000 aluminum and the bottom bar is N08332 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 51
170
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 7.3
34
Fatigue Strength, MPa 64
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 180
520
Tensile Strength: Yield (Proof), MPa 86
210

Thermal Properties

Latent Heat of Fusion, J/g 560
310
Maximum Temperature: Mechanical, °C 170
1050
Melting Completion (Liquidus), °C 590
1390
Melting Onset (Solidus), °C 590
1340
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
32
Density, g/cm3 2.5
8.0
Embodied Carbon, kg CO2/kg material 7.8
5.4
Embodied Energy, MJ/kg 150
77
Embodied Water, L/kg 1070
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
140
Resilience: Unit (Modulus of Resilience), kJ/m3 51
110
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 55
24
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 28
18
Thermal Diffusivity, mm2/s 61
3.1
Thermal Shock Resistance, points 8.4
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.1 to 90
0
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 0 to 0.050
0 to 1.0
Iron (Fe), % 0 to 0.19
38.3 to 48.2
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0 to 0.45
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0
34 to 37
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 10 to 11.8
0.75 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0