MakeItFrom.com
Menu (ESC)

EN AC-44100 Aluminum vs. 1230A Aluminum

Both EN AC-44100 aluminum and 1230A aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-44100 aluminum and the bottom bar is 1230A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 4.9
4.5 to 34
Fatigue Strength, MPa 64
35 to 74
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 180
89 to 170
Tensile Strength: Yield (Proof), MPa 87
29 to 150

Thermal Properties

Latent Heat of Fusion, J/g 570
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
640
Melting Onset (Solidus), °C 580
640
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
230
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
60
Electrical Conductivity: Equal Weight (Specific), % IACS 120
200

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.5
2.7
Embodied Carbon, kg CO2/kg material 7.7
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1050
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
6.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 53
5.9 to 150
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 55
50
Strength to Weight: Axial, points 19
9.1 to 17
Strength to Weight: Bending, points 27
16 to 25
Thermal Diffusivity, mm2/s 58
93
Thermal Shock Resistance, points 8.2
4.0 to 7.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 84.4 to 89.5
99.3 to 100
Copper (Cu), % 0 to 0.15
0 to 0.1
Iron (Fe), % 0 to 0.65
0 to 0.7
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.1
0 to 0.050
Manganese (Mn), % 0 to 0.55
0 to 0.050
Nickel (Ni), % 0 to 0.1
0
Silicon (Si), % 10.5 to 13.5
0 to 0.7
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.15
0 to 0.050
Residuals, % 0 to 0.15
0