MakeItFrom.com
Menu (ESC)

EN AC-44100 Aluminum vs. 336.0 Aluminum

Both EN AC-44100 aluminum and 336.0 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-44100 aluminum and the bottom bar is 336.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 59
110 to 130
Elastic (Young's, Tensile) Modulus, GPa 72
75
Elongation at Break, % 4.9
0.5
Fatigue Strength, MPa 64
80 to 93
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
28
Tensile Strength: Ultimate (UTS), MPa 180
250 to 320
Tensile Strength: Yield (Proof), MPa 87
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 570
570
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 590
570
Melting Onset (Solidus), °C 580
540
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 21
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
29
Electrical Conductivity: Equal Weight (Specific), % IACS 120
95

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.5
2.8
Embodied Carbon, kg CO2/kg material 7.7
7.9
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 1050
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
1.1 to 1.6
Resilience: Unit (Modulus of Resilience), kJ/m3 53
250 to 580
Stiffness to Weight: Axial, points 16
15
Stiffness to Weight: Bending, points 55
51
Strength to Weight: Axial, points 19
25 to 32
Strength to Weight: Bending, points 27
32 to 38
Thermal Diffusivity, mm2/s 58
48
Thermal Shock Resistance, points 8.2
12 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 84.4 to 89.5
79.1 to 85.8
Copper (Cu), % 0 to 0.15
0.5 to 1.5
Iron (Fe), % 0 to 0.65
0 to 1.2
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.1
0.7 to 1.3
Manganese (Mn), % 0 to 0.55
0 to 0.35
Nickel (Ni), % 0 to 0.1
2.0 to 3.0
Silicon (Si), % 10.5 to 13.5
11 to 13
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.15
0 to 0.35
Residuals, % 0 to 0.15
0