MakeItFrom.com
Menu (ESC)

EN AC-44100 Aluminum vs. S82013 Stainless Steel

EN AC-44100 aluminum belongs to the aluminum alloys classification, while S82013 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-44100 aluminum and the bottom bar is S82013 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 59
260
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 4.9
34
Fatigue Strength, MPa 64
400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 180
710
Tensile Strength: Yield (Proof), MPa 87
500

Thermal Properties

Latent Heat of Fusion, J/g 570
290
Maximum Temperature: Mechanical, °C 170
970
Melting Completion (Liquidus), °C 590
1420
Melting Onset (Solidus), °C 580
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.5
7.7
Embodied Carbon, kg CO2/kg material 7.7
2.4
Embodied Energy, MJ/kg 140
34
Embodied Water, L/kg 1050
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
220
Resilience: Unit (Modulus of Resilience), kJ/m3 53
640
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 55
25
Strength to Weight: Axial, points 19
26
Strength to Weight: Bending, points 27
23
Thermal Diffusivity, mm2/s 58
4.0
Thermal Shock Resistance, points 8.2
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 84.4 to 89.5
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
19.5 to 22
Copper (Cu), % 0 to 0.15
0.2 to 1.2
Iron (Fe), % 0 to 0.65
70.5 to 77.1
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.55
2.5 to 3.5
Nickel (Ni), % 0 to 0.1
0.5 to 1.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 13.5
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0