MakeItFrom.com
Menu (ESC)

EN AC-44200 Aluminum vs. 4004 Aluminum

Both EN AC-44200 aluminum and 4004 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN AC-44200 aluminum and the bottom bar is 4004 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 6.2
2.4
Fatigue Strength, MPa 63
42
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 180
110
Tensile Strength: Yield (Proof), MPa 86
60

Thermal Properties

Latent Heat of Fusion, J/g 570
540
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 590
600
Melting Onset (Solidus), °C 580
560
Specific Heat Capacity, J/kg-K 910
910
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
33
Electrical Conductivity: Equal Weight (Specific), % IACS 130
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.5
2.6
Embodied Carbon, kg CO2/kg material 7.7
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1050
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 51
25
Stiffness to Weight: Axial, points 16
15
Stiffness to Weight: Bending, points 55
54
Strength to Weight: Axial, points 20
12
Strength to Weight: Bending, points 28
20
Thermal Diffusivity, mm2/s 59
58
Thermal Shock Resistance, points 8.4
5.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.2 to 89.5
86 to 90
Copper (Cu), % 0 to 0.050
0 to 0.25
Iron (Fe), % 0 to 0.55
0 to 0.8
Magnesium (Mg), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 0.35
0 to 0.1
Silicon (Si), % 10.5 to 13.5
9.0 to 10.5
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0 to 0.2
Residuals, % 0 to 0.15
0 to 0.15