MakeItFrom.com
Menu (ESC)

EN AC-44300 Aluminum vs. 2024 Aluminum

Both EN AC-44300 aluminum and 2024 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN AC-44300 aluminum and the bottom bar is 2024 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 1.1
4.0 to 16
Fatigue Strength, MPa 100
90 to 180
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 270
200 to 540
Tensile Strength: Yield (Proof), MPa 150
100 to 490

Thermal Properties

Latent Heat of Fusion, J/g 570
390
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 590
640
Melting Onset (Solidus), °C 580
500
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
30
Electrical Conductivity: Equal Weight (Specific), % IACS 120
90

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.5
3.0
Embodied Carbon, kg CO2/kg material 7.7
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1050
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
20 to 68
Resilience: Unit (Modulus of Resilience), kJ/m3 150
70 to 1680
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 55
46
Strength to Weight: Axial, points 29
18 to 50
Strength to Weight: Bending, points 36
25 to 49
Thermal Diffusivity, mm2/s 58
46
Thermal Shock Resistance, points 13
8.6 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 84.3 to 89.5
90.7 to 94.7
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.1
3.8 to 4.9
Iron (Fe), % 0 to 1.0
0 to 0.5
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 0.55
0.3 to 0.9
Silicon (Si), % 10.5 to 13.5
0 to 0.5
Titanium (Ti), % 0 to 0.15
0 to 0.15
Zinc (Zn), % 0 to 0.15
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0 to 0.25
0 to 0.15