MakeItFrom.com
Menu (ESC)

EN AC-44300 Aluminum vs. 6261 Aluminum

Both EN AC-44300 aluminum and 6261 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-44300 aluminum and the bottom bar is 6261 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 1.1
9.0 to 16
Fatigue Strength, MPa 100
60 to 120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 270
150 to 300
Tensile Strength: Yield (Proof), MPa 150
100 to 260

Thermal Properties

Latent Heat of Fusion, J/g 570
400
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 590
640
Melting Onset (Solidus), °C 580
610
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
180
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
48
Electrical Conductivity: Equal Weight (Specific), % IACS 120
160

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.5
2.7
Embodied Carbon, kg CO2/kg material 7.7
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1050
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
21 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 150
77 to 500
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 55
50
Strength to Weight: Axial, points 29
15 to 31
Strength to Weight: Bending, points 36
23 to 37
Thermal Diffusivity, mm2/s 58
75
Thermal Shock Resistance, points 13
6.5 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 84.3 to 89.5
96.6 to 98.6
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.1
0.15 to 0.4
Iron (Fe), % 0 to 1.0
0 to 0.4
Magnesium (Mg), % 0
0.7 to 1.0
Manganese (Mn), % 0 to 0.55
0.2 to 0.35
Silicon (Si), % 10.5 to 13.5
0.4 to 0.7
Titanium (Ti), % 0 to 0.15
0 to 0.1
Zinc (Zn), % 0 to 0.15
0 to 0.2
Residuals, % 0 to 0.25
0 to 0.15