MakeItFrom.com
Menu (ESC)

EN AC-45000 Aluminum vs. 4032 Aluminum

Both EN AC-45000 aluminum and 4032 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-45000 aluminum and the bottom bar is 4032 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 77
120
Elastic (Young's, Tensile) Modulus, GPa 73
73
Elongation at Break, % 1.1
6.7
Fatigue Strength, MPa 75
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
28
Tensile Strength: Ultimate (UTS), MPa 180
390
Tensile Strength: Yield (Proof), MPa 110
320

Thermal Properties

Latent Heat of Fusion, J/g 470
570
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 640
570
Melting Onset (Solidus), °C 520
530
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 120
140
Thermal Expansion, µm/m-K 22
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
34
Electrical Conductivity: Equal Weight (Specific), % IACS 81
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 3.0
2.6
Embodied Carbon, kg CO2/kg material 7.7
7.8
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 1070
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
25
Resilience: Unit (Modulus of Resilience), kJ/m3 80
700
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 47
53
Strength to Weight: Axial, points 17
41
Strength to Weight: Bending, points 24
45
Thermal Diffusivity, mm2/s 47
59
Thermal Shock Resistance, points 8.0
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.2 to 91.8
81.1 to 87.2
Chromium (Cr), % 0 to 0.15
0 to 0.1
Copper (Cu), % 3.0 to 5.0
0.5 to 1.3
Iron (Fe), % 0 to 1.0
0 to 1.0
Lead (Pb), % 0 to 0.3
0
Magnesium (Mg), % 0 to 0.55
0.8 to 1.3
Manganese (Mn), % 0.2 to 0.65
0
Nickel (Ni), % 0 to 0.45
0.5 to 1.3
Silicon (Si), % 5.0 to 7.0
11 to 13.5
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 2.0
0 to 0.25
Residuals, % 0 to 0.35
0 to 0.15