MakeItFrom.com
Menu (ESC)

EN AC-45000 Aluminum vs. A356.0 Aluminum

Both EN AC-45000 aluminum and A356.0 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-45000 aluminum and the bottom bar is A356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
70
Elongation at Break, % 1.1
3.0 to 6.0
Fatigue Strength, MPa 75
50 to 90
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 180
160 to 270
Tensile Strength: Yield (Proof), MPa 110
83 to 200

Thermal Properties

Latent Heat of Fusion, J/g 470
500
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 520
570
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
40
Electrical Conductivity: Equal Weight (Specific), % IACS 81
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.6
Embodied Carbon, kg CO2/kg material 7.7
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1070
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
4.8 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 80
49 to 300
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 47
53
Strength to Weight: Axial, points 17
17 to 29
Strength to Weight: Bending, points 24
25 to 36
Thermal Diffusivity, mm2/s 47
64
Thermal Shock Resistance, points 8.0
7.6 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.2 to 91.8
91.1 to 93.3
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 3.0 to 5.0
0 to 0.2
Iron (Fe), % 0 to 1.0
0 to 0.2
Lead (Pb), % 0 to 0.3
0
Magnesium (Mg), % 0 to 0.55
0.25 to 0.45
Manganese (Mn), % 0.2 to 0.65
0 to 0.1
Nickel (Ni), % 0 to 0.45
0
Silicon (Si), % 5.0 to 7.0
6.5 to 7.5
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 2.0
0 to 0.1
Residuals, % 0 to 0.35
0 to 0.15