MakeItFrom.com
Menu (ESC)

EN AC-45000 Aluminum vs. ASTM A229 Spring Steel

EN AC-45000 aluminum belongs to the aluminum alloys classification, while ASTM A229 spring steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45000 aluminum and the bottom bar is ASTM A229 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 77
490 to 550
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.1
14
Fatigue Strength, MPa 75
710 to 790
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 180
1690 to 1890
Tensile Strength: Yield (Proof), MPa 110
1100 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 470
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 520
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 120
50
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 81
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
1.8
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 7.7
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1070
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
200 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 80
3260 to 4080
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 17
60 to 67
Strength to Weight: Bending, points 24
40 to 43
Thermal Diffusivity, mm2/s 47
14
Thermal Shock Resistance, points 8.0
54 to 60

Alloy Composition

Aluminum (Al), % 82.2 to 91.8
0
Carbon (C), % 0
0.55 to 0.85
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 3.0 to 5.0
0
Iron (Fe), % 0 to 1.0
97.5 to 99
Lead (Pb), % 0 to 0.3
0
Magnesium (Mg), % 0 to 0.55
0
Manganese (Mn), % 0.2 to 0.65
0.3 to 1.2
Nickel (Ni), % 0 to 0.45
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 5.0 to 7.0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 2.0
0
Residuals, % 0 to 0.35
0