MakeItFrom.com
Menu (ESC)

EN AC-45000 Aluminum vs. B535.0 Aluminum

Both EN AC-45000 aluminum and B535.0 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-45000 aluminum and the bottom bar is B535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 77
65
Elastic (Young's, Tensile) Modulus, GPa 73
66
Elongation at Break, % 1.1
10
Fatigue Strength, MPa 75
62
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 180
260
Tensile Strength: Yield (Proof), MPa 110
130

Thermal Properties

Latent Heat of Fusion, J/g 470
390
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 520
550
Specific Heat Capacity, J/kg-K 870
910
Thermal Conductivity, W/m-K 120
96
Thermal Expansion, µm/m-K 22
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
24
Electrical Conductivity: Equal Weight (Specific), % IACS 81
82

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.6
Embodied Carbon, kg CO2/kg material 7.7
9.4
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 1070
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
22
Resilience: Unit (Modulus of Resilience), kJ/m3 80
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 47
51
Strength to Weight: Axial, points 17
28
Strength to Weight: Bending, points 24
35
Thermal Diffusivity, mm2/s 47
40
Thermal Shock Resistance, points 8.0
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.2 to 91.8
91.7 to 93.4
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 3.0 to 5.0
0 to 0.1
Iron (Fe), % 0 to 1.0
0 to 0.15
Lead (Pb), % 0 to 0.3
0
Magnesium (Mg), % 0 to 0.55
6.5 to 7.5
Manganese (Mn), % 0.2 to 0.65
0 to 0.050
Nickel (Ni), % 0 to 0.45
0
Silicon (Si), % 5.0 to 7.0
0 to 0.15
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0.1 to 0.25
Zinc (Zn), % 0 to 2.0
0
Residuals, % 0 to 0.35
0 to 0.15