MakeItFrom.com
Menu (ESC)

EN AC-45100 Aluminum vs. 7076 Aluminum

Both EN AC-45100 aluminum and 7076 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-45100 aluminum and the bottom bar is 7076 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 97 to 130
160
Elastic (Young's, Tensile) Modulus, GPa 72
70
Elongation at Break, % 1.0 to 2.8
6.2
Fatigue Strength, MPa 82 to 99
170
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 300 to 360
530
Tensile Strength: Yield (Proof), MPa 210 to 320
460

Thermal Properties

Latent Heat of Fusion, J/g 470
380
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 630
630
Melting Onset (Solidus), °C 550
460
Specific Heat Capacity, J/kg-K 890
860
Thermal Conductivity, W/m-K 140
140
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
35
Electrical Conductivity: Equal Weight (Specific), % IACS 95
100

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.8
3.0
Embodied Carbon, kg CO2/kg material 7.9
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1100
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 7.6
31
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 710
1510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
45
Strength to Weight: Axial, points 30 to 35
49
Strength to Weight: Bending, points 35 to 39
48
Thermal Diffusivity, mm2/s 54
54
Thermal Shock Resistance, points 14 to 16
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88 to 92.8
86.9 to 91.2
Copper (Cu), % 2.6 to 3.6
0.3 to 1.0
Iron (Fe), % 0 to 0.6
0 to 0.6
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.15 to 0.45
1.2 to 2.0
Manganese (Mn), % 0 to 0.55
0.3 to 0.8
Nickel (Ni), % 0 to 0.1
0
Silicon (Si), % 4.5 to 6.0
0 to 0.4
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 0.2
7.0 to 8.0
Residuals, % 0 to 0.15
0 to 0.15