MakeItFrom.com
Menu (ESC)

EN AC-45100 Aluminum vs. S17700 Stainless Steel

EN AC-45100 aluminum belongs to the aluminum alloys classification, while S17700 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45100 aluminum and the bottom bar is S17700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 97 to 130
180 to 430
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.0 to 2.8
1.0 to 23
Fatigue Strength, MPa 82 to 99
290 to 560
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 300 to 360
1180 to 1650
Tensile Strength: Yield (Proof), MPa 210 to 320
430 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 470
290
Maximum Temperature: Mechanical, °C 170
890
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
13
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.9
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1100
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 7.6
15 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 710
460 to 3750
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 30 to 35
42 to 59
Strength to Weight: Bending, points 35 to 39
32 to 40
Thermal Diffusivity, mm2/s 54
4.1
Thermal Shock Resistance, points 14 to 16
39 to 54

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88 to 92.8
0.75 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 2.6 to 3.6
0
Iron (Fe), % 0 to 0.6
70.5 to 76.8
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.15 to 0.45
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Nickel (Ni), % 0 to 0.1
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 4.5 to 6.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0