MakeItFrom.com
Menu (ESC)

EN AC-45100 Aluminum vs. S44800 Stainless Steel

EN AC-45100 aluminum belongs to the aluminum alloys classification, while S44800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45100 aluminum and the bottom bar is S44800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 97 to 130
190
Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 1.0 to 2.8
23
Fatigue Strength, MPa 82 to 99
300
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
82
Tensile Strength: Ultimate (UTS), MPa 300 to 360
590
Tensile Strength: Yield (Proof), MPa 210 to 320
450

Thermal Properties

Latent Heat of Fusion, J/g 470
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 140
17
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 95
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
19
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.9
3.8
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1100
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 7.6
120
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 710
480
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 30 to 35
21
Strength to Weight: Bending, points 35 to 39
20
Thermal Diffusivity, mm2/s 54
4.6
Thermal Shock Resistance, points 14 to 16
19

Alloy Composition

Aluminum (Al), % 88 to 92.8
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 2.6 to 3.6
0 to 0.15
Iron (Fe), % 0 to 0.6
62.6 to 66.5
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.15 to 0.45
0
Manganese (Mn), % 0 to 0.55
0 to 0.3
Molybdenum (Mo), % 0
3.5 to 4.2
Nickel (Ni), % 0 to 0.1
2.0 to 2.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 4.5 to 6.0
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0