MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. 6182 Aluminum

Both EN AC-45300 aluminum and 6182 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is 6182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 1.0 to 2.8
6.8 to 13
Fatigue Strength, MPa 59 to 72
63 to 99
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 220 to 290
230 to 320
Tensile Strength: Yield (Proof), MPa 150 to 230
130 to 270

Thermal Properties

Latent Heat of Fusion, J/g 470
410
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 590
600
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 150
160
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
40
Electrical Conductivity: Equal Weight (Specific), % IACS 120
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
110 to 520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 23 to 29
23 to 32
Strength to Weight: Bending, points 30 to 35
30 to 38
Thermal Diffusivity, mm2/s 60
65
Thermal Shock Resistance, points 10 to 13
10 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.2 to 94.2
95 to 97.9
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 1.0 to 1.5
0 to 0.1
Iron (Fe), % 0 to 0.65
0 to 0.5
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
0.7 to 1.2
Manganese (Mn), % 0 to 0.55
0.5 to 1.0
Nickel (Ni), % 0 to 0.25
0
Silicon (Si), % 4.5 to 5.5
0.9 to 1.3
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0 to 0.1
Zinc (Zn), % 0 to 0.15
0 to 0.2
Zirconium (Zr), % 0
0.050 to 0.2
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants