MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. Nickel 685

EN AC-45300 aluminum belongs to the aluminum alloys classification, while nickel 685 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is nickel 685.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 94 to 120
350
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 1.0 to 2.8
17
Fatigue Strength, MPa 59 to 72
470
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 220 to 290
1250
Tensile Strength: Yield (Proof), MPa 150 to 230
850

Thermal Properties

Latent Heat of Fusion, J/g 470
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 630
1380
Melting Onset (Solidus), °C 590
1330
Specific Heat Capacity, J/kg-K 890
460
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.0
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1120
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
190
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
1820
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 23 to 29
42
Strength to Weight: Bending, points 30 to 35
31
Thermal Diffusivity, mm2/s 60
3.3
Thermal Shock Resistance, points 10 to 13
37

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
1.2 to 1.6
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
12 to 15
Copper (Cu), % 1.0 to 1.5
0 to 0.5
Iron (Fe), % 0 to 0.65
0 to 2.0
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0 to 0.25
49.6 to 62.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 4.5 to 5.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
2.8 to 3.3
Zinc (Zn), % 0 to 0.15
0.020 to 0.12
Residuals, % 0 to 0.15
0