MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. C43000 Brass

EN AC-45300 aluminum belongs to the aluminum alloys classification, while C43000 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is C43000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 1.0 to 2.8
3.0 to 55
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
42
Tensile Strength: Ultimate (UTS), MPa 220 to 290
320 to 710
Tensile Strength: Yield (Proof), MPa 150 to 230
130 to 550

Thermal Properties

Latent Heat of Fusion, J/g 470
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 630
1030
Melting Onset (Solidus), °C 590
1000
Specific Heat Capacity, J/kg-K 890
380
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
27
Electrical Conductivity: Equal Weight (Specific), % IACS 120
28

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 8.0
2.8
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1120
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
20 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
82 to 1350
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 23 to 29
10 to 23
Strength to Weight: Bending, points 30 to 35
12 to 20
Thermal Diffusivity, mm2/s 60
36
Thermal Shock Resistance, points 10 to 13
11 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.2 to 94.2
0
Copper (Cu), % 1.0 to 1.5
84 to 87
Iron (Fe), % 0 to 0.65
0 to 0.050
Lead (Pb), % 0 to 0.15
0 to 0.1
Magnesium (Mg), % 0.35 to 0.65
0
Manganese (Mn), % 0 to 0.55
0
Nickel (Ni), % 0 to 0.25
0
Silicon (Si), % 4.5 to 5.5
0
Tin (Sn), % 0 to 0.050
1.7 to 2.7
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
9.7 to 14.3
Residuals, % 0 to 0.15
0 to 0.5