MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. N10675 Nickel

EN AC-45300 aluminum belongs to the aluminum alloys classification, while N10675 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 1.0 to 2.8
47
Fatigue Strength, MPa 59 to 72
350
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
85
Tensile Strength: Ultimate (UTS), MPa 220 to 290
860
Tensile Strength: Yield (Proof), MPa 150 to 230
400

Thermal Properties

Latent Heat of Fusion, J/g 470
320
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 590
1370
Specific Heat Capacity, J/kg-K 890
380
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.7
9.3
Embodied Carbon, kg CO2/kg material 8.0
16
Embodied Energy, MJ/kg 150
210
Embodied Water, L/kg 1120
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
330
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
350
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 23 to 29
26
Strength to Weight: Bending, points 30 to 35
22
Thermal Diffusivity, mm2/s 60
3.1
Thermal Shock Resistance, points 10 to 13
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.2 to 94.2
0 to 0.5
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 1.0 to 1.5
0 to 0.2
Iron (Fe), % 0 to 0.65
1.0 to 3.0
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
0
Manganese (Mn), % 0 to 0.55
0 to 3.0
Molybdenum (Mo), % 0
27 to 32
Nickel (Ni), % 0 to 0.25
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 4.5 to 5.5
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.15
0 to 0.1
Residuals, % 0 to 0.15
0