MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. R30816 Cobalt

EN AC-45300 aluminum belongs to the aluminum alloys classification, while R30816 cobalt belongs to the cobalt alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is R30816 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 94 to 120
280
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 1.0 to 2.8
23
Fatigue Strength, MPa 59 to 72
250
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 220 to 290
1020
Tensile Strength: Yield (Proof), MPa 150 to 230
460

Thermal Properties

Latent Heat of Fusion, J/g 470
300
Melting Completion (Liquidus), °C 630
1540
Melting Onset (Solidus), °C 590
1460
Specific Heat Capacity, J/kg-K 890
420
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Density, g/cm3 2.7
9.1
Embodied Carbon, kg CO2/kg material 8.0
20
Embodied Energy, MJ/kg 150
320
Embodied Water, L/kg 1120
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
190
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 23 to 29
31
Strength to Weight: Bending, points 30 to 35
25
Thermal Diffusivity, mm2/s 60
3.3
Thermal Shock Resistance, points 10 to 13
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.2 to 94.2
0
Carbon (C), % 0
0.32 to 0.42
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
40 to 49.8
Copper (Cu), % 1.0 to 1.5
0
Iron (Fe), % 0 to 0.65
0 to 5.0
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
0
Manganese (Mn), % 0 to 0.55
1.0 to 2.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0 to 0.25
19 to 21
Niobium (Nb), % 0
3.5 to 4.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 4.5 to 5.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
3.5 to 4.5
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0