MakeItFrom.com
Menu (ESC)

EN AC-45400 Aluminum vs. 380.0 Aluminum

Both EN AC-45400 aluminum and 380.0 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-45400 aluminum and the bottom bar is 380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86
80
Elastic (Young's, Tensile) Modulus, GPa 72
74
Elongation at Break, % 6.7
3.0
Fatigue Strength, MPa 55
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
28
Tensile Strength: Ultimate (UTS), MPa 260
320
Tensile Strength: Yield (Proof), MPa 130
160

Thermal Properties

Latent Heat of Fusion, J/g 470
510
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 630
590
Melting Onset (Solidus), °C 560
540
Specific Heat Capacity, J/kg-K 880
870
Thermal Conductivity, W/m-K 140
100
Thermal Expansion, µm/m-K 22
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
27
Electrical Conductivity: Equal Weight (Specific), % IACS 95
83

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.8
2.9
Embodied Carbon, kg CO2/kg material 7.8
7.5
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1100
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
8.0
Resilience: Unit (Modulus of Resilience), kJ/m3 110
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
48
Strength to Weight: Axial, points 25
31
Strength to Weight: Bending, points 32
36
Thermal Diffusivity, mm2/s 54
40
Thermal Shock Resistance, points 12
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.4 to 92.9
79.6 to 89.5
Copper (Cu), % 2.6 to 3.6
3.0 to 4.0
Iron (Fe), % 0 to 0.6
0 to 2.0
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0 to 0.1
Manganese (Mn), % 0 to 0.55
0 to 0.5
Nickel (Ni), % 0 to 0.1
0 to 0.5
Silicon (Si), % 4.5 to 6.0
7.5 to 9.5
Tin (Sn), % 0 to 0.050
0 to 0.35
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0 to 3.0
Residuals, % 0 to 0.15
0 to 0.5