MakeItFrom.com
Menu (ESC)

EN AC-45400 Aluminum vs. AWS ER80S-B6

EN AC-45400 aluminum belongs to the aluminum alloys classification, while AWS ER80S-B6 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45400 aluminum and the bottom bar is AWS ER80S-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 6.7
19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 260
620
Tensile Strength: Yield (Proof), MPa 130
540

Thermal Properties

Latent Heat of Fusion, J/g 470
260
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 140
40
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 95
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
4.7
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1100
71

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110
750
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 25
22
Strength to Weight: Bending, points 32
21
Thermal Diffusivity, mm2/s 54
11
Thermal Shock Resistance, points 12
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.4 to 92.9
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
4.5 to 6.0
Copper (Cu), % 2.6 to 3.6
0 to 0.35
Iron (Fe), % 0 to 0.6
90.6 to 94.7
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.55
0.4 to 0.7
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0 to 0.1
0 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 4.5 to 6.0
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0 to 0.5