MakeItFrom.com
Menu (ESC)

EN AC-45500 Aluminum vs. EN 1.4618 Stainless Steel

EN AC-45500 aluminum belongs to the aluminum alloys classification, while EN 1.4618 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45500 aluminum and the bottom bar is EN 1.4618 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.8
51
Fatigue Strength, MPa 80
240 to 250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 320
680 to 700
Tensile Strength: Yield (Proof), MPa 250
250 to 260

Thermal Properties

Latent Heat of Fusion, J/g 500
280
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 610
1400
Melting Onset (Solidus), °C 600
1360
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
270 to 280
Resilience: Unit (Modulus of Resilience), kJ/m3 430
160 to 170
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 34
24 to 25
Strength to Weight: Bending, points 40
22 to 23
Thermal Diffusivity, mm2/s 65
4.0
Thermal Shock Resistance, points 15
15 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.6 to 93.1
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 0.2 to 0.7
1.0 to 2.5
Iron (Fe), % 0 to 0.25
62.7 to 72.5
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.15
5.5 to 9.5
Nickel (Ni), % 0
4.5 to 5.5
Nitrogen (N), % 0
0 to 0.15
Phosphorus (P), % 0
0 to 0.070
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0