MakeItFrom.com
Menu (ESC)

EN AC-46000 Aluminum vs. 2030 Aluminum

Both EN AC-46000 aluminum and 2030 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-46000 aluminum and the bottom bar is 2030 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
70
Elongation at Break, % 1.0
5.6 to 8.0
Fatigue Strength, MPa 110
91 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
26
Tensile Strength: Ultimate (UTS), MPa 270
370 to 420
Tensile Strength: Yield (Proof), MPa 160
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 530
390
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 620
640
Melting Onset (Solidus), °C 530
510
Specific Heat Capacity, J/kg-K 880
870
Thermal Conductivity, W/m-K 100
130
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
34
Electrical Conductivity: Equal Weight (Specific), % IACS 82
99

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.8
3.1
Embodied Carbon, kg CO2/kg material 7.6
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 170
390 to 530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
45
Strength to Weight: Axial, points 26
33 to 38
Strength to Weight: Bending, points 33
37 to 40
Thermal Diffusivity, mm2/s 42
50
Thermal Shock Resistance, points 12
16 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 79.7 to 90
88.9 to 95.2
Bismuth (Bi), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.15
0 to 0.1
Copper (Cu), % 2.0 to 4.0
3.3 to 4.5
Iron (Fe), % 0 to 1.3
0 to 0.7
Lead (Pb), % 0 to 0.35
0.8 to 1.5
Magnesium (Mg), % 0.050 to 0.55
0.5 to 1.3
Manganese (Mn), % 0 to 0.55
0.2 to 1.0
Nickel (Ni), % 0 to 0.55
0
Silicon (Si), % 8.0 to 11
0 to 0.8
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 1.2
0 to 0.5
Residuals, % 0 to 0.25
0 to 0.3